Official 23 Passage 1
Question 8 of 14

According to paragraph 4, what can explain the substantial differences in temperature between one area and another within a well-developed heat island?

A.

The overall size of the heat island that includes the two areas

B.

The intensity of the heat island that includes the two areas

C.

Differences between the two areas in the general level of activity, including traffic

D.

Differences between the two areas in the insulation materials used in construction

Paragraph 4 is marked with an arrow

正确答案:C

显示答案
进入答题

译文

Urban Climates


[#paragraph1]The city is an extraordinary processor of mass and energy and has its own metabolism. A daily input of water, food, and energy of various kinds is matched by an output of sewage, solid waste, air pollutants, energy, and materials that have been transformed in some way. The quantities involved are [#highlight1]enormous[/highlight1]. Many aspects of this energy use affect the atmosphere of a city, particularly in the production of heat.
 

[#paragraph2]In winter the heat produced by a city can equal or [#highlight2]surpass[/highlight2] the amount of heat available from the Sun. All the heat that warms a building eventually transfers to the surrounding air, a process that is quickest where houses are poorly insulated. But an automobile produces enough heat to warm an average house in winter; and if a house were perfectly insulated, one adult could also produce more than enough heat to warm it. Therefore, even without any industrial production of heat, an urban area tends to be warmer than the countryside that surrounds it.
 

[#paragraph3]The burning of fuel, such as by cars, is not the only source of this increased heat. Two other factors contribute to the higher overall temperature in cities. The first is the heat capacity of the materials that constitute the city, which is typically dominated by concrete and asphalt. During the day, heat from the Sun can be conducted into these materials and stored—to be released at night. But in the countryside materials have a significantly lower heat capacity because a vegetative blanket prevents heat from easily flowing into and out of the ground. The second factor is that radiant heat coming into the city from the Sun is trapped in two ways: (1) by a continuing series of reflections among the numerous vertical surfaces that buildings present and (2) by the dust dome, the cloudlike layer of polluted air that most cities produce. Shortwave radiation from the Sun passes through the pollution dome more easily than outgoing longwave radiation does; the latter is absorbed by the gaseous pollutants of the dome and reradiated back to the urban surface.
 

[#paragraph4]Cities, then, are warmer than the surrounding rural areas, and together they produce a phenomenon known as the urban heat island. Heat islands develop best under particular conditions associated with light winds, but they can form almost any time. [#insert1] The precise [#highlight7]configuration[/highlight7] of a heat island depends on several factors. [#insert2] For example, the wind can make a heat island stretch in the direction it blows. [#insert3] When a heat island is well developed, variations can be extreme; in winter, busy streets in cities can be 1.7°C warmer than the side streets. [#insert4] Areas near traffic lights can be similarly warmer than the areas between them because of the effect of cars standing in traffic instead of moving. The maximum differences in temperature between neighboring urban and rural environments is called the heat-island intensity for that region. In general, the larger the city, the greater its heat-island intensity. The actual level of intensity depends on such factors as the physical layout, population density, and productive activities of a metropolis.
 

[#paragraph5]The surface-atmosphere relationships inside metropolitan areas produce a number of climatic peculiarities. For one thing, the presence or absence of moisture is affected by the special qualities of the urban surface. With much of the built-up landscape impenetrable by water, even gentle rain runs off almost immediately from rooftops, streets, and parking lots. Thus, city surfaces, as well as the air above them, tend to be drier between episodes of rain; with little water available for the cooling process of evaporation, relative humidities are usually lower. Wind movements are also [#highlight11]modified[/highlight11] in cities because buildings increase the friction on air flowing around them. This friction tends to slow the speed of winds, making them far less efficient at dispersing pollutants. On the other hand, air turbulence increases because of the effect of skyscrapers on airflow. Rainfall is also increased in cities. The cause appears to be in part greater turbulence in the urban atmosphere as hot air rises from the built-up surface.