Official 8 Passage 3
Question 14 of 14

Directions: An introductory sentence for a brief summary of the passage is provided below. Complete the summary by selecting the THREE answer choices that express the most important ideas in the passage. Some sentences do not belong in the summary because they express ideas that are not presented in the passage or are minor ideas in the passage. This question is worth 2 points.


Photographic evidence suggests that liquid water once existed on the surface of Mars.
Answer Choices:

A.

Various types of images have been used to demonstrate that most of the Martian surface contains evidence of flowing water.

B.

The runoff and outflow channels of Mars apparently carried a higher volume of water and formed more extensive networks than do Earth’s river systems.

C.

Mars’ runoff and outflow channels are large-scale, distinctive features that suggest that large quantities of liquid water once flowed on Mars.

D.

Although some researchers claim that Mars may once have had oceans, others dispute this, pointing to an absence of evidence or offering alternative interpretations of evidence.

E.

While numerous gullies have been discovered on Mars since 2000, many astronomers dismiss them as evidence that Mars once had liquid water.

F.

There is lack of direct evidence of liquid water on Mars today, and it is assumed that most of the water that once existed on the planet is frozen beneath its surface.

正确答案:CDF

显示答案
进入答题

译文

Running Water on Mars?


[#paragraph1]Photographic evidence suggests that liquid water once existed in great quantity on the surface of Mars. Two types of flow features are seen: runoff channels and outflow channels. Runoff channels are found in the southern highlands. These flow features are extensive systems—sometimes hundreds of kilometers in total length—of interconnecting, twisting channels that seem to [#highlight1]merge[/highlight1] into larger, wider channels. They bear a strong resemblance to river systems on Earth, and geologists think that they are dried-up beds of long-gone rivers that once carried rainfall on Mars from the mountains down into the valleys. Runoff channels on Mars speak of a time 4 billion years ago (the age of the Martian highlands), when the atmosphere was thicker, the surface warmer, and liquid water widespread.

[#paragraph2]Outflow channels are probably [#highlight3]relics[/highlight3] of catastrophic flooding on Mars long ago. [#insert1] They appear only in equatorial regions and generally do not form extensive interconnected networks. [#insert2] Instead, they are probably the paths taken by huge volumes of water draining from the southern highlands into the northern plains. [#insert3] The onrushing water arising from these flash floods likely also formed the odd teardrop-shaped “islands” (resembling the [#highlight4]miniature[/highlight4] versions seen in the wet sand of our beaches at low tide)  that have been found on the plains close to the ends of the outflow channels. [#insert4] Judging from the width and depth of the channels, the flow rates must have been truly enormous—perhaps as much as a hundred times greater than the 105 tons per second carried by the great Amazon river. Flooding shaped the outflow channels approximately 3 billion years ago, about the same time as the northern volcanic plains formed.

[#paragraph3]Some scientists speculate that Mars may have enjoyed an extended early period during which rivers, lakes, and perhaps even oceans adorned its surface. A 2003 Mars Global Surveyor image shows what mission specialists think may be a delta—a fan-shaped network of channels and sediments where a river once flowed into a larger body of water, in this case a lake filling a crater in the southern highlands. Other researchers go even further, suggesting that the data provide evidence for large open expanses of water on the early Martian surface. A computer-generated view of the Martian north polar region shows the extent of what may have been an ancient ocean covering much of the northern lowlands. The Hellas Basin, which measures some 3,000 kilometers across and has a floor that lies nearly 9 kilometers below the basin’s rim, is another candidate for an ancient Martian sea.

[#paragraph4]These ideas remain controversial. Proponents point to features such as the terraced “beaches” shown in one image, which could conceivably have been left behind as a lake or ocean evaporated and the shoreline receded. [#highlight10]But detractors maintain that the terraces could also have been created by geological activity, perhaps related to the geologic forces that depressed the Northern Hemisphere far below the level of the south, in which case they have nothing whatever to do with Martian water.[/highlight10] Furthermore, Mars Global Surveyor data released in 2003 seem to indicate that the Martian surface contains too few carbonate rock layers—layers containing compounds of carbon and oxygen—that should have been formed in abundance in an ancient ocean. Their absence supports the picture of a cold, dry Mars that never experienced the extended mild period required to form lakes and oceans. However, more recent data imply that at least some parts of the planet did in fact experience long periods in the past during which liquid water existed on the surface.

[#paragraph5]Aside from some small-scale gullies (channels) found since 2000, which are inconclusive, astronomers have no direct evidence for liquid water anywhere on the surface of Mars today, and the amount of water vapor in the Martian atmosphere is tiny. Yet even setting aside the unproven [#highlight12]hints[/highlight12] of ancient oceans, the extent of the outflow channels suggests that a huge total volume of water existed on Mars in the past. Where did all the water go? The answer may be that virtually all the water on Mars is now locked in the permafrost layer under the surface, with more contained in the planet’s polar caps.